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IMPORTANCE &WJGPLING IN MONTE CARLO ANALYSES

ABSTRACT

Importance sampling is described as used in Monte Carlo analyses.

An intuitive justification of the procedure is developed through a

non-mathematical consideration of the fundamental random processes in-

volved. The sampling procedure and its efficiency are illustrated by

minerical examples.

1. Introduction. The author has consulted with operations ana-

lysts concerning the statistical problems of Monte Carlo sampling. In-

evitably importance sampling is suggested, and this procedure disturbs

the analyst. The difficulty is not simply that importance sampling is

not understood, but that superficially it appears absurd. For exacple,

if a Monte Carlo analysis is to evaluate the effectiveness of a weapon

one of whose parameters is a reliability coefficient known to be between

.50 and .75, the analyst might be told to carry out the simulation using

.25 for the reliability coefficient. Such a proposal can be puusling,

and can generate resistance that Is not easily overcome.

The limited understwd~n of Importance sampling is unfortunate.

The technique Is easy to employ, at least in its simplest form It an

be highly efficient. When understood, it is a simple, natural procedure
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which does not require professional ability in statistics. The follov-

ing exposition was written for the author's clients. The discussion

is intended to be an elementary presentation of fundumental statistical

ideas which should be familiar to an operations analyst interested In

Monte Carlo.

This paper is an expository, largely non-technical discussion of

statistical sampling problems that arise in Monte Carlo analyses. Ex-

cept for the appendices, no statistical knowledge is presumed beyond

recognition of the nature of a probability distribution. Techniques

are not elaborated. In relatively simple Monte Carlo analyses the pro-

cedures discsizoed can be enployed adequately by the non-mathematician.

In the case of un elaborate Monte Carlo, the ideas qf this paper should

form the basis for coordination between the operations analysts and the

mathe-matical statintician.

Thc payer strrts with an informal statement of what is meant by

a Monte Carlo analysis. Tlere follows a digression on stratified

samplingC; this digression will bring to light some inportant elements in

the Monte Carlo analysis. Finally the discussion of importance sampling

in Monte Carlo statistical analysis is presented throuh simple numerical

illustrations. Mathematical derivations are placed in appendices.

2. Monte Carlo. This section indicates what is meant by a Monte

Carlo analysis. The discussion introduces a simple example which will

be used later as a numerical illustration.

Suppose that a machine starts at time zero and runs until the time

of failure x. The time x is random with probability density X exp(- Xx),
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0 < x < a. At the time of failure the machine must be scrapped with

probability p, 0 < p < 1, but with probability q w 1 - p the machine

is repaired. If repaired, the machine runs from time x to x + x'

with x' distributed as x. Again the machine survives with probability

q) and in case of survival the third failure occurs at time x + x' + )'

with x" distributed as x. The process terminates when the machine is

scrapped.

Suppose that we wish to know the probability that the machine will

survive until time X (there may be failures before time X, but each of

these failures is repaired). This probability can be computed analyti-

cally, and this computation appears below in Appendix B. Alternatively

one could use the following analysis. One would draw a random number

from the exponential distribution with probability density X exp(- ?x),

and this number would simulate the time to the first failure. Another

random number (uniformly distributed) would determine whether the machine

could be repaired. If a repair is effected, a second generation from the

exponential distribution would determine the time between the first and

second failures. It is obvious how the simulation would continue until

the machine would be scrapped. If such a process were carried out several

times, the fraction of times that the machine survived to time X would be

used as an estimate of the desired probability.

If one's interest were in this problem per se, the analytic solu-

tion is much to be preferred to the statistical sampling procedure. How-

ever later in the paper we shall consider a Monte Carlo analysis of this
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problem. The fact that the problem can be handled analytically wi

permit evuluations of the Monte Carlo analysis that would be impossi-

ble in case of a problem appropriate for Monte Carlo analyuis; typically

a Monte Carlo analysis is used only when an analytic solution is not

obtainable. In this paper, somewhat incorrectly, an "analytic" pro-

cedure is one that does not involve statistical sampling.

The statistical sampling procedure as described above is based upon

a model whose random elements are given analytically. -"Thts distinguishes

the problem from a typical survey statistics problem. If one were to

estimate the tobacco consumption per capita from a sample, one might con-

sider the consumption of an individual to be a random variable. But in

that case, the distribution of the random variable is unknown. One could

not replace a survey of people by some desk procedure of simulating people

and designating their consumptions by numbers read from a table. However#

regardless of whether the sample data are obtained from a desk simlation

or a field survey, the subsequent mathematical analysis of the sample

data could be the same.

Some writers would distinguish between the machine-failure and

tobacco-consumption problems by saying that the first can 1. solved by a

Monte Carlo analysis, the term Monte Carlo indicating that one knovs ex-

plicitly the distributions of all the random elements in the problem. In

this sense the term Monte Carlo signifies that one could simulate the

random process by a desk calculation which uses tables of random nmbers

or by a computer program which generates random numbers. With this
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definition Monte Carlo does not require any distinctive mathematical

analysis. The techniques of analysis were In use before the term Monte

Carlo was employed. The problems to be considered in this paper are Monte

Carlo problems in the sense of the above definition. The objective of the

paper could be stated as that of efficiency in Monte Carlo analyses. We

shall retain this definition at present, but an alternative definition will

appear below.

Monte Carlo analysis, as so defined, is almost a general, effective

procedure which enables one to solve many problems too complex for mathe-

matical analysis. But there is one unfortunate fact. Such Monte Carlo

analysis is costly. In one problem it required a high-speed computer

to run li hours to obtain a single sample value. At least 20 runs were

required for even a small sample, and results were desired for hundreds

of sets of model parameters.

There are ways to reduce the cost of such Monte Carlo analyses.

Computer capabilities can be increased, and judicious'adaptation of models

can reduce costs. But a much easier way to reduce costs is through the

employment of efficient sampling techniques. The nature and efficacy of

importance sampling, one of these techniques, is the subject of this paper.

In importance sampling one considers a statistical sampling problem

of the type designated above as a Monte Carlo problem. However, one does

not carry out the sampling in the manner suggested by the problem. Rather

a new random process is introduced in place of the original. The nature

of this substitution will come to light in later sections of the paper. At

present we merely remark that some writers reserve the term Monte Carlo for
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a method of analysis in which one creates a random variable whose

expected value is the solution of a given problem. This random vari-

able is artificial with respect to the given problem. In the machine-

failure problem one is concerned with the random variable which is 1 if

a machine is scrapped prior to time X, and which is 0 if the machine

survives until time X (the expected value of this random variable in the

probability that a machine is scrapped prior to time X.) This random

variable is given in the statement of the problem, and it is not created

by the mathematician during the course of the analysis. However, in the

solution constructed below by a Monte Carlo analysis, this random vari-

able is not used. Rather the mathematician creates another random

variable, whose expected value is the same as that of the given random

variable, but whose expected value is cheaper to obtain by statistical

sampling.

3. Stratified Sampling. The problem of section 2 could be analysed

by simulating the histories of many machines and computing statistics of

the outcomes. The statistician would say that data were obtained by

simple random sampling. But in costly statistical analyses it is usually

possible to replace simple random sampling by some more efficient pro-

cedure. Before describing such a procedure for use in Monte Carlo

analyses, we shall examine some features of stratified sampling. This

digression will illustrate in simple form the basic idea to be employed

in importance sampling.

As a hypothetical illustrative example we suppose that a hotel wishes

to estimate the mean annual expenditures by its guests in barber shops and
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beauty parlors. It is known that the expenditures by women differ more

widely than expenditures by men. Many men get a $2 haircut evezry 2

weeks at an annual cost of roughly $50; expenditures of as nuch as $100

or as little as $25 are found occasionally. Expenditures by women can

vary from nothing to over $500. The mean expenditure for women is harder

to estimate than the mean for men.

We assume that 80% of the hotel guests are men. Suppose that a

sample of size 15 is to be taken (we use an absurdly small sample size

to simplify the exposition.) If simple random sampling were employed,

we would expect the sample to consist of 12 men (80% of 15) and 3 women.

However, one might decide to sample 5 men and 10 women. Suppose the

expenditurea of the members of such a sample turned out to be in dollars:

Men: 50, P50, 50, 50, 100

Women: O, 50, 100, 100, 200, 200, 200, 300, 500, 800.

It is intuitively clear that such data will lead to a more accurate esti-

mate of the over-all average than would the expenditures of 12 men and 3

women.

To analyse these data we calculate R and Q, the means of the 5 male

expenditures and the 10 female expenditures, respectively. The results

are

R - 60,
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These means emphasize the fact that strLitfied sGwipling is more

advantal;eous than simple random scnzpling in the present situation. We

can observe that )50 of the women have expenditures greater than the

mean W. This reflects the fact that a minority of the women have an

important influence on the meon 14 and on the mean when both se:es are

pooled into a single distribution. It is likely that the estimates -o

be made would be more accurate if an even greater fraction of the sample

consisted of women. However the optimum fraction is not relevant to the

following discussion

We return to the problem of estimating the mean expenditure for all

persons, male cuid female. If a simple random swiple of size 15 had been

drawn, one would divide the sum of the 15 data by 15. But this can not

be done in the prescat instance because we have distorted the natural,

simple ranidom sr,. i Aing procedure. However the analysis in the face of

this distortion is obv'ious. Since 8fp' of the guests are men, we compute

the followirN; weii',hted mean of A and W, and we obtain an estimated mean

expenditure of all hotel cuests to be

*

The data surrcst that the sruple of women should be roul;hly 2.7 times
as large no the scurple of men. This ratio is obtained from (.2)(I0.20)
/(.8)(17.39) in which .2 nud .3 are the fractions of women and men
respectively in the Ijiw~ulation, and )1.20 and 17.8) are e:mirical esti-
mates of the standard deviations of the expenditures for women and mcn,
respectively. A Justification of this result is beyond the scope of
this paper. Discussions of thii, anfilysis appear in [1], (2], [3), and
other discusfsions of stratified samplin'.
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i - .8R + .29

- (.8)(60) + (.2)(245) - 97.

We could estimate the sampling error in this estimate. We shall not

do so because the error analysis is not needed for our purposes.

We turn next to a cruder and more cumbersome analysis of the data

given above. This alternative analysis is less appealing in the barber-

beauty shop problem. However, interesting analogies with Monte Carlo

analysis will appear.

Let us suppose that the sample was taken among the hotel guests

registered at a specific time (we ignore the fact that the statistical

properties of these guests may not accurately reflect the statistical

properties of all guests over a period of time.) Let us suppose that when

the sample was drawn, there were 80 men and 20 women registered at the

hotel. If simple random scunplinj, hrd been employed, 15 of the 100 guests,

without consideration of sex, would have been selected in such a manner

that each guest had the probability .15 of being included in the samile.

Thus a random process is visualized which would select 15 guests. Before

the process would be implemented, the particular 15 selected would be un-

certain, but each of the 100 guests would have the probability .15 of being

selected in the sample.

This simple random sampling process was not employed. Rather the

natural process was distorted. Whereas any man Mi would have the proba-

bility
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p(Mi) . .15

of being included in a simple random samplep the probability was dis-

torted to

p *(M,) . 5/8o - o0625

under the distorted sampling procedure which selected 5 of the 80 ml

guests. For any individual woman W the probability of being Included

in a simple random sample is

p(W1 ) - .15,

and the probability of being included in a sample drawn by the distorted

process is

P*(w) 10/20 -.5

Consider a particular man who was selected in the sample that was

drawn. To be specific suppose that this man is the one with expenditure

100. We shall designate him by M100 , For analytic purposes to be re-

vealed below, we compute for this man the weight

P(M1 oo)

100 .

The interpretation of this weight is that M100 would expect to appear in
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simple random cwLiplea (if a large number of samples would be drawn) 2.4

times as often as in swnples drawn under the distorted process. The

distorted process underestimates the importance of M o° by the factor

of 2.4. Suppose that the hotel Luosts numbered thousands, instead of

100, and that there were many duplicates of M Ioo* The distorted sampling

process would include several duplicates of M100, but in simple random

sampling one would exj ect 2.4 times as many of such duplicates. Hence in

the analysis, which will be carried out with use of fonmulas desianed for

simple random sampling, we will count M10 as 2.4 individuals.

Similarly, consider one of the women drawn into the sample, say

Wee o * For her we have the weight

w(W8  pP(1ooo) .15
ooo  -j .3 •800

If many simple random samples would be drawn, this lady would be drawn

into the sample approximately 50f, as often as she could expect to be

chosen under the distorted process. Hence the distorted process over-

estimates the importance of the lady by a factor of 1/.3 = 3.33. In the

analysis we should downgrade the lady's importance by counting her as .

of a person.

We return to the numerical sample. For each person actually drawn

into the sample we compute the weight. For each man the weight is 2.4

and for erich woman the weight is .3. We compute the arithmetic mean of

the 15 numbers in the sample, but we count each ran as 2.4 men and each
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woman as .3 women. The result is a new estimate of i, called i', com-

puted as

(2.)(5o) +...+ 2.4(100) + )...+ (.3)(8oo).9T.
15 -

Fortunutely x' - x. It is possible to prove that this equality is to

be anticipated. Such a proof is not presented in this paper, except

for a special case found in Appendix B. Proofs are given in references

(4] and [5].

The statistic i is simpler to comprehend than i'. However the

second statistic, or rather the basic ideas involved in the definition

of R', can be employed in a wide variety of situations. In fact we can

state the following general rule. As an estimator of a population ex-

pected value we could use a sample mean calculated from the elements of

a simple random sample. Suppose, however, that instead of simple random

sampling we use a sampling procedure in which the population elements

have probabilities (or likelihoods) of inclusion within the sample vhich

are different from the probabilities under simple random sampling. For

each element x of the population from which the sample is drawn, let p(x)

and p *(x) be the probabilities that the element x would be drawn Into the

sample under simple random sampling and the alternative sampling process,

respectively. Consider the weight w(x) - p(x)/p*(x). We can still use

the sample mean as an estimator of the population expected value if we

weight each sample value by w(x). This rule will be illustrated and

clarified below.
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4. Importance Sampling in Monte Carlo Analynis. We are ready

to discuss importance sampling. The discussion continues through the

medium of trivial numerical illustratlons..

Consider the exponential distribution with probability density

(1) p(x) a .01 exp(- .Olx), 0 : x <-s

We shall estimate the probability that a sample value from this distri-

bution is less than 1. This probability is easy to obtain analytically,

being 1 - exp(- .01) = .00995 to five decimal places. However we shall

attack the problem by a Monte Carlo analysis in order to obtain a simple

illustration involving sampling with distorted probability distributions.

Suppose we were to generate a simple random sample from the distri-

bution (1). It would require a large sample to give an accurate estimate

of the probability that a sample value of (1) is lees than 1. This is

due to the fact that approximately 1% of the sample values would be less

than 1. Hence hundreds of sample values would be required before we would

know that the fraction is near .01.

In order to obtain a greater proportion of sample values within the

interval of importance, namely (0,1) we shall distort the sampling pro-

cedure. We introduce the distribution with probability density

(2) p*(x) = cxp(- x).

If we sample from this distribution, which superficially has no relevance
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to the problem, we shall achieve the result that a large fraction of

the soa:iple values will fall within the importance interval (0,1); the

expected fraction is I - e" - .63. Setting aside momentarily any

question of the sanity of our operation, let us consider a sample from

the distribution p*(x). Suppose that the first number generated from

p*(x) were 2. Let us consider the likelihoods of generating this value

2 in both undistorted and distorted sampling. The likelihood in case of

undistorted sampling is obtained from (1) as p(2) - .01 exp(- .02)

.0098020, and the likelihood of drawing this same value 2 in distorted

sampling is obtained from (2) as p*(2) .13534. The ratio of these

likelihoods is

_jjj =.ooo .o
* 13534 07p* (2) .),

approximatzly. This implies that in undistorted sampling one can expect

approxi iy 7 as many sample values in the interval (2, 2 + dx) as

would be obtained under distorted sampling. But this means that one can

sample fmm p (x), count the number of sample values between 2 and

2 + dx, and multiply by .07; in this way one has an unbiased estimate of

the number of sample values expected between 2 and 2 + dx under undistorted

sampling (and with the same sample size.) In practice, If 2 were generated

under distorted sampling, one would accept 2 not as one value but as .07

of a value.

The numbers computed above for x - 2 appear in Table 1. This table

also contains similar results for other values of x. For example, Table 1
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gives the weight 1.412 for the sample value x - 5. This implies that

a sample value within the interval (5, 5 + dx) can be expected 41.2%

more often with undistorted sampling than with distorted sampling.

Several such weights are listed in Table 1. The weights reflect the

obvious fact that small sample values are more likely to be generated

from p*(x) but large values are more likely from p(x).

To illustrate the use of weighted sampling we have drawn a random

sample of size 10 from p*(x). The sample values of x are listed in Table

2. In addition Table 2 gives each of the weights. Since we are estimating

the probability that x is less than 1, we consider the six values of x in

Table 2 that are less than 1. The value .31 is counted s .014 of an

observation, .17 as .012 of an observation, etc. The sum of the weights

for the six x's less than 1 is .096. Hence we count slightly less than

one-tenth of an x less than 1. Since the sample size is 10, we estimate

the probability that x in undistorted sampling will be less than 1 to be

.096/10 - .0096. This estimate is close to the true value .00995.

The procedure has been the following. If one were to sample from

p(x), approximately one out of a hundred sample values would be less than

1, and it would require a large sample to produce adequate data for an

estimate of the probability that x is less than 1. We replaced p(x) by

p (x) which generates a large fraction of its sample values less than 1.

We observed that any sample value from p*(x) can be weighted in such a

way as to represent a nmnber of sample values from the distribution of p(x).

This number (weight) is in some cases a small fraction and in other cases

much greater than 1. In the numerical illustration the distorted sampling
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produced 6 of i0 stunple values less than 1. But the weighting procedure

led to counting each of" the 6 as a small fraction of a single value when

the values are to be interpreted as from the distribution of p(x). The

mathematical Justification of the weighting procedure and the estimate of

the variance will not be made in this paper

5. Ccmmon Distortions of Two or More Random Processes. In Section

4 we eatiiiated a parameter of the distribution p(x) given by (1)6 We did

not generate a sample from this distribution; instead, our sample was from

the distribu-' )n p*(x) given by (2). Let us observe that p4 (x) can be

regarded as a distortion of many distributions. Hence the sample of

Table 2, drawn from p*(x), can be used for statistical analyses of many

distributions.

To clarify this matter by a numerical illustration, we consider the

distribution with probability density

p'(x) . .02 exp(- .02x), 0 < x <

We shall estimate the probability that x, randomly drawn from p'(x), is

less than or equal to 1. Our new problem is identical with the problem

of Section 4 except that p(x) is replaced by p'(x).

See (4] or (51.
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We shall use the same p*(x) as a distortion of p'(x). We proceed

as in Section 4 and obtain Table 3 in place of Table 2. The sum of

the weights in Table 3 for sample values in the interval (0,i) is .190.

Dividing this sum by the sample size 10, we obtain .0190 as the esti-

mate of the probability that x from p'(x) is less thin or equal to 1.

This estimate can be compared with the true value .0198.

The salient feature is that two problems have been solved by use

of the same sample (the first columns of Tables 2 and 3 are identical).

In a serious Monte Carlo most of the computing time is used in obtaining

the sample values from the distorted distribution; typically the time

for statistical analysis is relatively insignificant. In our trivial

example this does not happen to be true. But if we should assume that

the major part of the computation consisted in the generation of the first

column in Tables 2 and 3, we would conclude that we have solved two

problems at the cost essentially of a single analysis.

In general, consider the probability distributions obtained by

assigning a set of values to X in X exp(- Xx). Suppose that for each of

these distributiona we wish to know the probability that x is less than or

equal to 1. All these problems can be solved from a single sample drawn

from p*(x). If the number of values apsigned to X is large, the savings

obtained from distorted sampling can be tremendous. (However, if the

values of X differ greatly among themselves, it is possible that a conTon

distortion of all the dietributions may not be efficient for every X. It

might be necessary to group the values of X into sets, and to handle the

sets separately. Such technicalities are beyond the scope of this paper.)
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6. Complex Stochastic Processes. In the example or Section

the efficiency of the Monte Carlo analysis can be greatly Increased

by distorted sampling. (We say that a first sampling procedure is k

times as efficient as a second procedure if the sample sizes I and N

respectively, required for a given sampling error satisfy N - k I.)

Unfortunately most Monte Carlo analyses are applied to more complex

stochastic processes, and the dramatic savings of Section 4 are much

harder to obtain. (But the procedure of Section 5 is no less efficient.)

We shall illustrate this fact by an example of a stochastic process with

two random elements.

Consider the random variable y which is distributed uniformly

between 0 and 200. The probability density of y is

p(y). 1/200, 0 S y < 200,

0 otherwise.

We also use the random variable x with probability density p(x) given

by (1). We assme x and y independently distributed. We shall study

z - x + y, and we consider the estimation by Monte Carlo analysis of the

probability that z is less than 1. To obtain values of z in the important

interval (0,1) we shall distort the distributions of both x and y. The

distortion of p(x) will be the same used above. The distortion of P(y) will

be the probability density

P*(y) 1/399, f < y < 200,

0 otherwise
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Under distorted sampling for y, i.e., with y generated from the

distribution with density P*, the weight will be P(y)/P*(y) - .005

if 0 : y <1, and P(y)/P*(y) - 1.995 if f <y 5 200.

Suppose that one should generate under distorted sampling x - .4

and y - .4, and hence z = .8. Since x and y are independently distri-

buted, the likelihood of this pair of drawings under undistorted sampling

is p(x)P(y), and the likelihood under distorted sampling is p*(x)P*(Y).

Hence the weight associated with the pair of values is

p *(x)p*(y)

This is the product of the weights associated with x and y indi-

vidually. For x = .4, the weight is seen in Thble 1 to be .0149, and

for y = .4, the weight is given above as .005. Hence the weight associ-

ated with z determined as .4 + .4 is (.0149)(.005) • .0000745.

Suppose that another pair of drawings gave x - .2 and y - .6p and

hence again z - .8. One easily checks that the weight associated with

the pair of generations is (.0122)(1.995) - .024339. The important aspect

of these results is that both pairs of generations produced the same z,

namely z - .8, but the weights are different, indeed greatly different.

Thus we do not have the monotonicity of the weight as a function of

distance which is apparent in Table 1. Such instability of the weights

can greatly reduce the efficiency of sampling distortions. This fact is

proved in Appendix A.
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Let us reflect on this exwriplc. The generation of a value of z

requires the Leneration of an x and a y. Under distorted sartpling the

weitiL associated with z is the product of the weights associated with

x and y. Suppose that a small value of x is drawn. Since such a small

x is more likely under distorted sampling, w(x) is small. This tends

to make the weight of z smal. This is fortunate because our objective

under distorted sampling is to get a large number of small values of z;

furthermore, the large number of z's must have small weights associated

with them to prevent bias in the statistical estimates.

However, this advantageous relation between x and w(x) does not

necessarily produce the same relation between z and w(z). If a small x

is added to a moderately large y, the sum is a z which is not small.

However, the weight w(z) might Le small, being the product of a very

small w(x) and a v:ilue of w(y) near 1. In other words, although there

may be advantageous correlations between x and w(x) as well as between

y and w(y), it is an urdfortunate fact that the resulting correlation

between x + y and w(x)w(y) may be weak. Thus we do not have the situ-

ation in which ll smmal values of z have small weights and all large

values of z have large weights. The serious implications of this non-

monotonic relation between z and w(z) may not be apparent. However, it

is proved in Appendix A that such instability of the weights can greatly

reduce the efficiency of the distorted sampling.

Consider a complex Monte Carlo. There will be many random vari-

ables xI,...,XPn with n in some cases greater than 1,000. Instead of
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the simple relation z = x + y, the outcome of the process z is some

complex function of x ,...I xn . In general, the greater n, the more

difficult it is to achieve an effective correlation between this function

z and the product of the n weight factors.

In complex Monte Carlo analyses one tries to introduce distorted

sampling of one or more of the random variables in the process. The

objective is to obtain a relatively large amount of data within intervals

of importance. Furthermore these data should have small weights to com-

pensate for their large quantity. The data which fall outside the inter-

vals of importance should be few in number but for that reason have large

weights. For complex stochastic processes it is often difficult to

determine appropriate distortions.

7. A Less Unrealistic Illustration. We have described some aspects

of the statistical sampling problem in Monte Carlo analysis. These dis-

cussions will be summarized through the medium of a numerical example

which is intended to bridge the gap between formalism and realistic

application. The discussion is based upon mathematical results which are

deferred to the appendices.

We shall study the process described above in which the running time

between failures of a machine is generated from the distribution with

probability density X exp(- )x), 0 < x < a; at each time of failure the

machine dies (is scrapped) with probability p but is repaired with proba-

bility q = 1 - p; in case of repair an additional running time is generated

from the same exponential distribution; the process continues until death is
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generated at a time of failure. Let us suppose that the basic problem

is to determine the 1% quantile of the distribution of times to death.

In other words we wish a lower tolerance limit for this time to death

so that with 99% confidence one can assume that a machine's life will

exceed this tolerance limit. This 1% quantile, which we shall denote by

X, can be computed analytically, and this is done in Appendix B. For

this reason our example is simpler than most Monte Carlo simulations.

But the simplicity will permit analytic evaluations which are impossible

if a simulation is complex.

The running times and death or survival at each failure could be

simulated. The histories of several machines could be generated, and the

time of death recorded for each history. From the record of these empirl-

cal times of death, one could estimate the 1% quantlle X. Such an esti-

mate would have a large relative error unless the sample size were very

large. This is due to the fact that very few of the empirical data would

be within the interval of importance (OX).

To obtain a greater fraztion of the empirical results within the

importance interval (O,X), we can distort the Monte Carlo process. We

can replace the distribution of running times with one having a smaller

expected time between failures. Furthermore we can increase the probe-

bility of death at each failure. We note that the expected value of the

random variable with probability density X exp(- Xx) is 1/X (indeed, the

integral from 0 to a of' Xx exp(- Xx) is 1/X.) Hence if the exponential

distribution with parameter X is replaced by the exponential distribution



6-24 -6o
-23-

with parameter X with X < X , the expected time between failures is

reduced from 1/X to 1/)*. In addition we can replace the probability

of death p by p > p.

Thus one would hope to employ importance sapling advantageously

by increasing X and p to X* and p. -But appropriate values for X and

p are not immediately obvious. Should both or only one of the parameters

be distorted? How great should the distortions be? Before discussing

how one might resolve these questions, we shall indicate the optimum

distortions in a special case.

To particularize the discussion we shall use X = 1 and p = I. For
* * *

several pairs of values of X and q 1 - p we have computed the effi-

ciency of the distorted sampling relative to undistorted sampling. These

relative efficiencies appear in Table 4. For example Table 4 gives .00538

for the relative efficiency in case * - 80 and q a .005. This means

thi-t if the sampling error is preassigned, and if a sample of size N is

required under undistorted sampling to keep the error of estimate within

the given limit of error, a sample size of .00538N would be adequate to

attain the same accuracy if the parameters are distorted to X = 80 and

q - .005.

We shall present a mathematical analysis of this numerical example

in Appendix B. But first we oonclude the non-mathematical part of the

exposition with some general remarks. In a real problem one cannot con-

stract Table 4; if one has enough information to construct such a table,

it is likely that one could solve the problem analytically. Hence one
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muct obtain goud distortions of the model parameters partly by guess-

work. Such guezoirig is not a simple matter. Table 4 reveals that some

distortions would be disastrous.

In the face of our illustrative problem one might reason as follows.

One cannot get a large fraction of small times to death x merely by

increasing p. This is due to the fact that the first time to failure

is generated before the probability p comes into play, and the first time

to death already exceeds X in a large fraction of the histories. Hence

it is likely that large sampling savings will require a distortion of X.

It would appear dangerous to rely solely on a distortion of p.

Without lurther insight into the times that would be generated

under unidistorted sampling, one could not do much better than the follow-

ing. We note that it could be disastrous to use too large values of I

and p ; indeed, Table 4 indicates that X = 1 and q = .0005 would be

bad, and we remark, without proof, that similar unfortunate results are
*

obtained if X* is increased beyond the range in Table 4. Hence one might

generate two small samples of histories with small distortions to say

X = 2 and q - .4 in one sample and 1 - 3 and q a .3 in the other.

Estimates of the sampling errors in the two samples could suggest trial

values of the parameters in a third sample. This timid., tentative, prob-

ing procedure has serious disadvantages. In the first place, the sampling

errors in thue estimates of the sampling errors would be grbat with small

samples, and the empirical results might mislead one to believe, until

further d:ta were available, that a distortion of X to 2 is better than a

distortion to 5. More seriously, the analysis would be completed (with
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small savings) before one used parameters anywhere near the optimum.

In some cases these difficulties cannot be circumvented.

If one can anticipate the results that would be obtained under simple

random sampling, one can act more effectively. Suppose one had reason to

believe that in undistorted sampling the expected value of the time to

death is near 2 (it is 2) and that the 1% quantile is near .020 (it is

.020). Then one would know that in undistorted sampling much of the time-

to-death data would be near 2, whereas we would like data near .020. This

suggests a distortion of the times to death which decreases the ex-

pected value of the distances by a factor of roughly 100. Use of X - 100

would effect such a distortion. Hence for the sake of simplicity one could
* *

leave p undistorted and use * - 50 or u - 25 depending upon how timid

one is in the face of the fact that it is voise, usually, to overestimate

than to underestimate the optimum distortion.

It is possible to devise less elementary procedures for arriving at

a good estimate of an optimum distortion (but to the author's knowledge,

current literature does not indicate any simple, generally applicable

procedure for estimating accurately an optimum distortion.) In general,

elemaentary considerations often cunnot be sharper than the above thoughts.

These thoughts lead to the suggestion that in the hands of a mathe-

mat ical amateur, importance sampling can produce significant but moderate

savings in computing tic. If a Monte Carlo is so large that high com-

puting costs are involved, it is likely that profit would result from

professional mathematical assistance in the design of the statistical sampling

proiedures.
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8. Estimates of Expected Values. The entire paper has been limit-

ed L) the discussion of one problem, the estimation of the probability

that the output of a Monte Carlo is less than X, where X is the 1%

quantile or some other quantile with a small percentage. This proba-

bility is an expected value (of the random variable which is 1 if the

time to death is less than X, and is 0 otherwise.) In general, Monte Carlo

analysis involves the estimation of expected values. However the different

information requirements arise in the estimations of different expected

values. Hence technical procedures vary from problem to problem.

Consider, for example, the numerical example discussed in Section 7.

One might wish to know the expected value of the distribution of times to

death. For tn estimate of this expected value, the distortions used above

would be bad. The large times of death are more important than the small

ones in the sense that an efficient sample should contain more large times

than would be generated in simple random sampling. One would in this case

decrease X and p. We shall not discuss this problem. Our purpose at this

point is to warn the reader not to assume that all Monte Carlo statistical

analysis are completely similar in details to the illustrations used in

this paper.
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APPENDIX A

In Section 6 concerned with complex stochastic processes we con-

sidered a random process with two random elements x and y. The output

of the process z = x + y was such that different pairs of x and y could

produce the same value of z. In addition, under the distorted sampling

employed, the weights associated with the different pairs could be

different. Hence for fixed z the weights vary. It was stated that this

variability of the weights can greatly reduce the efficiency of the dis-

torted sampling. This result will follow from the sampling error formla

derived in Appendix A.

We have a random process, and we wish to estimate the probability

that the outcome of the process is within some interval I; in the problems

considered in this paper the interval I was in the form (OX). A sample

is drawn with distorted distributions, and the empirical data consist of

a sequence of "distorted" outputs xi i - I,... ,N, and the corresponding

wei ghts wi; the outputs are sample values of a random variable. The

estimate of the probability that the output (in undistorted sampling) is

within I is

a
() t ' n i,

where we assume that the xi have been so arranged that xi is within I

If and only if i - a. (The statistic t is simply the number of sample
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values within I divided by the sample size, each sample value being

counted w times.) We shall derive the sampling variance of t.

Let p be the probability that an output x will be within I under

distorted sampling. Then a is a binomially distributed integer with N

and p as the binomial parameters. Hence the probability of n is

(4)Nn (1)n *N-n
(4) P(n) = ( p*q .

The expected value of t is the sum over a of the expected value given a

multiplied by the probability of n; in symbols

N

(5) E(t) = E(tln)P(n).

0

Let E(wilx*eI), i = 1,2, be the conditional expected value of wi under

the condition that the corresponding distorted output x* (i.e., the x

which has w as its weight) is in I. Since each wi which appears in (3)

corr'' ,,onds to an x within I, we have

E(tjn ) = N-'nE(wl *c.

This, (4) and (5) give

E(t) = N 1'E(wIx*EI) N p q N-n

0

Since the sum appearing in this expression is the expected value of n,
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Luid since this expected value is Np from the well-known theory of the

binomial distribution, we obtain

(6) E(t) - p*E(wil1X*).

In the calculation of E(t2 ) we shall encounter

N e (.) *- *N-n

0

which is the expected value of the square of the binomially distributed

variable n. which is the variance plus the square of the expected value

of n, which is well-known to be

(7) Np* q + (Np*)2.

Using this result we calculate that

N

E(t2) = ZE(t21n)P(n)

0

0= i=l 1i5 <<j <na

-2 E .1 , w i l (Np * n *N-n

=N
2  Z'nE(wjX*cI) + n(n - l)[E(wlx*eI)12 (n4 p fq*Nf

0
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(because of the independence of w± and v i 3, we have E(vvj)

- [EM)] for all n(n - 1)/2 pairs.) We replace n(n - 1) by n2 - n

and use (7) to obtain

E(t2 ) N-2(E(W21x*EI)Np* + [E(Vwx*CI]2(Np*q* + (Np*)2 - Np*)

Np*E(w21 xeI) + (p*2 -. 1*2 ( *2

because 1 - q - p*•

The variance of t is

V(t) - E(t2 ) - [E(t)] 2

which with use of (6) reduces to

V(t) - N'(p *E(w2 1x*cI) - P*2*[E(w2x°aI)l"

- N'(p*V(wlx*cI) + p*q*(E(wlx *I)]2)

because E(w2) . V(w) + [E(w)] 2 and p - p * p q•

This result might lead one to conclude that the sampling error can

be reduced by making p small, i.e., by use of a distortion which produces

a small smount of data within th- interval of Importance I. However such
4

* conclusion would be fallacious. If p were em&ll, the values of v,

elven x dl, would be large. The increase in E(wlx ci) and V(wtx~cI) would
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greatly outweigh the decrease in p * We shall not pause to develop
I *

this point. On the other hand, p and q can never exceed 1. Hence

small values of the expected value and variance of v, given x*clo will

produce a small sampling error. We recall that a large expected number

of distorted times x* within I must imply small E(wvx ri). This in

turn implies that most values of w, given x GI, should be small, and

*hence the variance of v, given x ci, should be small.
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APPENDIX B

Appendix B contains a mathematical analysis of the illustrative

random process used above. The time between failures is distributed

with probability density

(8) X exp(- Xx).

At each failure death occurs with probability p, but repair is effected

with probability q = 1 - p. When death occurs the process terminates,

but a repair is followed by another time to failure. We shall compute

the distribution of times to death. But most of Appendix B is taken up

with computation of weights and sampling error under importance sampling.

The error to be studied is the sampling error in a sample estimate of the

probability that a time to death does not exceed X, where X is any real

number. An interesting value for X is the 1% quuntile of the times to

death.

As an auxiliary formula we shall derive the probability density of

x - x, + ... + xn where the xi are independently distributed with proba-

bility density (8). We shall prove that this probability density is

(9) P(xln) - xXn,' e'XX/(n"- 1): •

For n = 1 the relation is obvious. To verify the general case by in-

duction we write

x

P(xln) - P(xI + ... + xn) fXn-itn-2 e-Xtlun -2)flXeX(Xt)dt

0

which reduces to (9).
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Let n be the number of failures prior to death, and let x be the

time to death. The probability that death occurs at the end of the
th

n time between failures is

(10) P(n) - q'Ip.

The probability density of x given n is (9),. Hence the probability

density of x is

PW , =ZP(xln)P(n)
1

which reduces to

(11) P(x) - pX exp(- pXx).

Thus as stated In Section 2 on Monte Carlo# our illustrative problem

can be solved analytically. If X - 1 and p . the quantile of x,

denoted by X, is obtained froti

x
I* exp(- it) dt - .01,
0

and this gives X - 2 log .99 - .020 as stated above. However, ve have

introduced a Monte Carlo analysis of this problem because of the possi-

bility of the following mthematical evaluation of the importance sampling
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procedure. Such a mathematical evaluation would be impossible in case

of a complex Monte Carlo.

We assume that importance sampling is employed in which X and p-
* *

are distorted to X and p . If a distorted history leads to death at

the time of the nth failure, and if x*, i . I,....,n, are the times between

failures, the weight is the product

I. q x(X2) 2
-X*x) q exp(-X)x)ex)(-X x *) P

which we write

(12) w(x*,n) 1 *

p

where

* *

X , X + ... +

is the (distorted) time to death.

Our problem is to estimate the probability (in undistorted sampling)

that a time to death x is less than or equal to X. If N is the sample

size, and if the index i indicates .the ith sample history, our estimator

is

N

N 1  Cx(x*)(X*,ni)
i~ l
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where C,(t) - 1 if t :X and = 0 if t >X. This means that we count

the histories for which x S X and divide by the muber of histories

in the sample, the history xi being counted as v(xiNni) histories. We

shall study the random variable

t - Cx(X*)V(x*,n),

because the variance of the sampling statistic is N'V(t), where V de-

notes variance.

For the expected value of t we have

E(t) -i~CX(X*)(x,n)P(x*1n)P(n)dx*.
0 1n1

The factor Cx(X*) can be deleted If we Integrat over (OX) rather than

(O,-*). Hence using (9), (10), and (12) ve obtain

X n_ n-I*n-

E(l) m fZ - ) -0 U~l q p(-l

0

a 1 - exp(- pXX).

The reader can check using (11) that 3(t) is the probability that x ! X.

This Justifies in this particular case the assumption made without proof

that the weighted output of distorted sampling produces an unbiased estimate.
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We obtain E(t2 ) by replacing w by v2 in the initial expression for

E(t). Reductions similar to those above give

E(t2 ) p~g*x2 1-+ eXPIX(X" 2X
p*(q X* _2q* XX +q2 X2 q X.J

The variance of t is obtained as E(t 2 ) - CE(t)] 2 , and Table 4 is obtained

from the specialization of V(t) with X = I and p J . Table 4 is this

V(t) divided by the value of this variance in undistorted sampling, that

* wis, when ). = and p = p.
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TA?. 1

Weights related to the use of p*(x) as a distortion of p(x)

x p(x) p *(x) w(x) = p(x)/p(x)

.1 .0099900 .90484 .0110

.2 .00q"3o0 .81873 .0122

.3 .0099700 .74&32 .0155

.4 .00>vC w0 •670-2 0149

.0099501 .UU .01

.6 .0099402 ';1 .0181

.7 •0029502 .b- .0200

.8 .009203 . 44)35 .0221

o .?,91o4 .4&K57 .0244

1.0 .0o)-,D" . 738 .0269
2.0 .07,' 42.0 .0C*,- . 1V,"4 •0724

3.0 .. +, • ('i737 •1949

l6.16 .5246

0. .0o,-5 .00.7579 1.112

o~o oo''+! ,, . ,, l ,,3.799

70 .0o.') 1-:5 oo,!40.22

8.(o .ov,, .ouo;46 27.52

).0 .0'Y'SI' ;1 74.56

1J;' ¢ ,:4•. ,', a3 199.3
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TABLE 2

Sample from p*(x) as a distortion of p(x)

Sample x p~x) *(x) v~x) . p(x)/p*(x)
from p*(x)

2.71 .009733 •o6654 .146

.31 .009969 .7534 .014

.17 .009983 .8437 .012

.02 .009998 .9802 .010

.59 .009941 .5543 .018

5 009946 .5828 .017

4.15 .009594 .01576 .609

.91 .009909 .4025 .025

2.72 .009732 .06588 .148

1.15 .009886 .3166 .031

Zw(x) = + o02 + .010 + .018 + .017 t .025

x<l

( o096

(1o)"' Zvx)-..o96
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TABLE 5

Sample from p*(x) as a distortion of p'(x)

.S a p l e x ( xP *P
from p*(x) P*() w(x). = pI(x)/p*(x)

2.71 .o1894 .o6654 .285

.31 .olo88 .734 .028

.17 .01993 .8437 .024

.02 .01999 -. (,82 .020

.59 .01976 .5544.o36

.54 .01978 .582T .034

4.15 .01841 .01576 1.17

.i ' .01964 .4' 25 .049

2.72 t .01 .oc88 .288

1.15 .01954 .5166 .062

w(x) .027 + .024 + 0 + .0 + .034 + .049

x<l

- .190

(lO) - ' ()=.1
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TABLE 4

Sample error in distorted sampling divided by the error in undh W.rt .1
sampling.

q .5 .3 .1 .01 .005 .Vol .0005
x

1 1.00000 .70904 .55679 .54068 .64145 .84770 14.58096 1087.46222

5 .19739 .13826 .10571 .10018 .10013 .10518 1.78017 3.33124

10 .o99o8 .06796 .05075 .04552 .o4653, .o4762 .06128 .08494

20 .0,)u55 .05327 .02370 .02197 .02100 .02126 .02470 .02989

40 .02770 .x1694 .olo97 .0o988 .oo919 .oo923 .01027 .01143

6o .02167 .01264 .00763 .00671 .00610 .00610 .oo668 .00754

80 .02032 .016 .00687 .00598 .00540 .oo538 .00580 ,00643

100 .02132 .01239 .0074y .oo652 .00590 .00587 .o0622 .00695

120 .024o9 .o1436 .0o896 .o0798 .00729 .00725 .00758 .00807

140 .02854 .01754 .1145 .01032 .00949 .009 9 .00981 .01030

16o .o3492 .02210 .o01499 .01368 .01278 .01270 .01303 .01353

180 .0o4361 .02833 ;01932 .0182P .01718 .01709 .01743 .01800

CEC: rs

20 Jwue 1960
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